

Forward-looking statement

This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act and Section 21E of the Securities Exchange Act of 1934, as amended, that are based on our management's beliefs and assumptions and on information currently available to our management. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. All statements other than statements of historical facts contained in this presentation, including statements regarding business strategy, plans and 2024 strategic priorities; the clinical, therapeutic and market potential of and expectations regarding our product candidates, platforms and proprietary capabilities; clinical development plans for TN-201, TN-401 and TN-301; preclinical efforts and timelines; availability and content of data from MyPEAKTM-1; the timing of initial dosing for RIDGETM-1; targeted populations for clinical trials and treatments; the sufficiency of Tenaya's cash runway to fund operations, as well as statements regarding industry trends, are forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as "purpose," "focus," "believe," "expected," "plan," "potential," "may," "future," "objective," or the negative of these terms or other similar expressions. We have based these forward-looking statements largely on our current expectations and projections about future events and trends that we believe may affect our financial condition, results of operations, business strategy and financial needs.

These forward-looking statements are subject to a number of risks, uncertainties and assumptions described in our filings with the SEC, including, but not limited to the section titled "Risk Factors" in our Quarterly Report on Form 10-Q for the fiscal quarter ended September 30, 2024, and other documents we have, or will file with the SEC. These filings, filed, are available on the SEC website at www.sec.gov. Such risks include, among other things: the availability of data at the referenced times; the timing of the initiation, progress, completion and potential results of our clinical trials and preclinical studies; our ability to advance product candidates into, and successfully complete, clinical trials and preclinical studies; the potential for clinical trials of our product candidates to differ from preclinical, preliminary, interim or expected results; the timing or likelihood of regulatory filings and approvals; our estimates of the number of patients who suffer from the diseases we are targeting and the number of patients that may enroll in our clinical trials; our ability to successfully manufacture and supply our product candidates for preclinical studies, clinical trials and for commercial use, if approved; our ability to commercialize our product candidates, if approved; future strategic arrangements and/or collaborations and the potential benefits of such arrangements and/or collaborations; our estimates regarding expenses, capital requirements and needs for financing, and our ability to obtain capital; our ability to retain the continued service of our key personnel and to identify, hire and retain additional qualified professionals; our ability to obtain and maintain intellectual property protection for our platforms, programs and product candidates; our ability to contract with third-party suppliers and manufacturers and their ability to perform adequately; the pricing, coverage and reimbursement of our product candidates, if approved; and developments relating to our competitors and our industry, including competing product candidates and therapies; general economic and market conditions; and other risks. These risks are not exhaustive. New risk factors emerge from time to time and it is not possible for our management to predict all risk factors, nor can we assess the impact of all factors on our business or the extent to which any factor, or combination of factors, may cause actual results to differ materially from those contained in, or implied by, any forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements. In light of the significant uncertainties in these forwardlooking statements, you should not regard these statements as a representation or warranty by us or any other person that we will achieve our objectives and plans in any specified time frame or at all. The forward-looking statements made in this presentation relate only to events as of the date on which such statements are made. Except as required by law, we undertake no obligation to update publicly any forward-looking statements for any reason after the date of this presentation. This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

This presentation contains trademarks, service marks, trade names and copyrights of Tenaya Therapeutics, Inc. and other companies which are the property of their respective owners.

Tenaya is well-positioned to lead innovation in precision medicines for heart disease

1 Singular focus on the heart

3 40+ clinical sites active in 7 countries

9 early-stage programs clinical-stage programs
for rare / prevalent conditions

TN-201 for MYBPC3-associated HCM
TN-401 for PKP2-associated ARVC
TN-301 for HFPEF

40+ clinical sites active in 7 countries

Funding into 2H
2025

1B+ Novel AAV capsids and regulatory elements screened

Genetic medicines for heart disease are on the cusp of a revolution

Increasing clinical and regulatory validation across the sector for precision heart medicines and for AAV gene therapies

2 recent approvals for precision heart medications

Guidance supports **smaller pivotal studies "feel & function" endpoints** in heart failure (1)

Clinical guidelines recommend genetic testing in the U.S. and Europe

> 100 genes associated with cardiomyopathies

7 approvals for potentially curative AAV gene therapies for diseases of the eye, brain, liver, & muscle (3)

> 5500 of patients in > 50 countries have received AAV gene therapies (4)

Gene therapies for rare disease have 2x-3.5x higher likelihood of approval (1, 2)

Early proof-of-concept data reported for AAV gene therapies aimed at cardiomyopathies

Deep and diverse pipeline addressing rare and prevalent indications

Program	Modality	U.S. Prevalence	Preclinical	Phase 1/2	Pivotal
Clinical-Stage Programs					
TN-201 for MYBPC3+ HCM	AAV9 gene therapy	> 120K ⁽¹⁾			
TN-401 for <i>PKP</i> 2+ARVC	AAV9 gene therapy	> 70K ⁽²⁾			
TN-301 for HFpEF	Small molecule	> 3M ⁽³⁾			
Research-Stage Programs					
DWORF for DCM & HFrEF	AAV gene therapy	Prevalent			
Post-MI Heart Failure	Cellular regeneration	Prevalent			
PLN ^{R14del} DCM	Cas9 gene editing	Rare			
Undisclosed targets	Gene therapy Gene editing Gene silencing	Rare and Prevalent			

[.] Sedaghat-Hemedani, et al., Clin Res Cardiol 2018

groeneweg, et al, Circ Cardiovasc Gen 2015 & McKenna, et al, Nature Rev Cardio 2021

^{3.} Abovich, et al, Am J Prev Cardio 2023

Integrated internal capabilities power modality-agnostic drug discovery engine

Target Discovery and Validation

- ✓ Deep insight
- ✓ Rapid design iterations
- Encouraging efficacy and safety signals
- Human genetic validation

Design, production, and delivery of genetic medicines

- √ Targeted delivery
- √ Robust expression
- ✓ Better product profiles
- ✓ Growing IP portfolio

MYBPC3-associated HCM is estimated to affect 120,000 people in the U.S. alone

A severe and progressive autosomal dominant condition affecting adults, teens, children and infants

~57% of identified genetic variants underlying familial HCM are *MYBPC3* mutations (1)

>30% of genetic variants underlying childhood-onset HCM are MYBPC3 mutations (2)

- Significant functional impairment
- Social and psychological impacts
- Symptoms include shortness of breath, fainting, chest pain, fatigue, palpitations, arrhythmias
- Elevated risk of sudden cardiac death and heart failure

Patients with genetic forms of HCM are at higher risk for serious cardiac events⁽¹⁾

Younger onset correlates with higher risk of morbidity and mortality

Median age of diagnosis is ...

39 years for genetic forms of HCM vs.

51 years for non-genetic forms (1)

2x Greater risk of adverse outcomes with sarcomeric mutations such as *MYBPC3*⁽¹⁾

of patients with genetic forms of HCM diagnosed before the age of 50 are likely to experience a life-threatening cardiac event⁽¹⁾

Serious cardiac events/adverse outcomes = e.g., cardiac arrest, heart failure, ventricular arrhythmias atrial fibrillation, transplant, sudden cardiac death and stroke

MYBPC3-associated pediatric patients represents sizable population lacking therapeutic options

Patients with pediatric-onset HCM are ...

36% more likely to develop life-threatening ventricular arrhythmias⁽¹⁾

more likely to require transplant or ventricular assist device (1)

Infants and children experience a markedly greater cumulative disease burden vs. adults (2)

Epidemiology at age of onset

Tenaya is in positioned to address this unmet need

TN-201 has received **Rare Pediatric Disease Designation** for pediatric-onset *MYBPC3*-associated HCM

29 sites have enrolled220 subjects

^{1.} Marston, et al, Eur Heart Journal 2021

^{2.} Meisner, et al, HCMS 2024

Nonobstructive HCM is the dominant form of *MYBPC3* disease

40% of all nonobstructive HCM patients – 88k in the U.S. – carry the MYBPC3 mutation⁽¹⁾

Severity of disease burden is similar across phenotypes⁽²⁾

of nonobstructive HCM patients are NYHA Class II & III(3)

Yet treatment options for nonobstructive HCM are limited

- Surgical methods (e.g., myectomy, septal ablation) not relevant options
- Typical treatment beta blockers, antiarrhythmics, blood thinners – utilized off-label to manage symptoms
- Cardiac myosin inhibitors (CMIs) have not yet demonstrated clinically meaningful benefits or been approved for use in nonobstructive HCM⁽⁴⁾

Res Cardiol 2018
2. Lu, et al, *JAHA* 2018

AHA; Sedaghat-Hemedani, et al., Clin 3. Maron, et al, ACC 2024
 Res Cardiol 2018
 Ho, et al, JACC 2020

TN-201 is the first gene therapy being developed for *MYBPC3*-associated HCM⁽¹⁾

Underlying Problem

- Mutations of the MYBPC3 gene lead to lower levels of myosin-binding protein C (MyBP-C)
- MyBP-C is an essential structural protein required to regulate the binding of myosin and actin in sarcomere
- Lower MyBP-C protein results in increased cardiac contractility (hypertrophy), thickening of left ventricle and impaired diastolic relaxation

Tenaya Approach

- Target the underlying genetic cause of disease
- Deliver a working MYBPC3 gene utilizing AAV9 capsid
- Produce functional protein to increase MyBP-C levels
- Potential to halt disease progression, reverse symptoms and improve patient quality of life

TN-201 gene therapy construct has been designed to maximize safety and efficacy

TN-201 proprietary promoter and cassette design enables selective and robust gene expression in relevant heart cells

In vivo comparison with standard promoter (in WT mice)

100% WT levels of MYBPC3 protein achieved in severe disease model with no protein overexpression

In vivo comparison (WT vs. Mybpc3 KO mice)

TN-201 preclinical evidence for disease reversal, improved heart function, increased survival

Single 3E13 vg/kg dose in MYBPC3 KO mouse model results in reduction in hypertrophy, durable improvement in cardiac function and extended survival

THeart Function

Survival

MyPeak-1 Phase 1b/2 clinical trial

Open-label, multi-center dose escalation and expansion trial

Study Objectives

- Safety, tolerability
- Dose-finding
- Pharmacodynamics

Design

- Open-label, multi-center, doseescalation and dose-expansion
- 52-week trial period with four-year safety and efficacy follow-up
- Cardiac biopsies at baseline, postdose and ~52 weeks (effective with Cohort 1, patient 3)

MyPEAK-1 Phase 1b/2 clinical trial

Initial data planned December 2024

First data readout expected to include (at least) safety, PK and PD Seeking directional consistency across multiple parameters over time

Exploring the full spectrum of MYBPC3 HCM patients

MyPEAK-1 started with adults with severe disease; Eligibility expanded in anticipation of possible pivotal pathways in adult sub-populations or pediatrics

PKP2-associated ARVC is estimated to affect >70,000 people in the U.S.

A severe and progressive genetic heart disease lacking therapeutic treatment options

>15% of heart-related deaths in patients < 35 years old is due to ARVC (3)

of ARVC patients present with sudden cardiac death

>75% of ARVC patients presenting with SCD have irreversible RV and/or LV fibro-fatty replacement

40% of ARVC patients carry pathogenic *PKP2* mutations (3)

Early symptoms include palpitations, lightheadedness, fainting (1)

 Significant impact on quality of life due to arrhythmias, ICD shocks and restrictions on physical exertion (3)

ARVC HEART

Scar tissue leads to electrical misfiring between cells

Enlarged right ventricle with fat and scar tissue

- Dalal, et al. Circ. 2005
- Hemida, et al, Eur J Heart Failure, 2018 SADS Foundation
- SCD= sudden cardiac death
 RV = right ventricle
 LV = left ventricle

TN-401 gene therapy for *PKP2*-associated ARVC

Underlying problem

- Mutations of the PKP2 gene lead to lower levels of Plakophilin-2 (PKP2) protein (1)
- PKP2 is an essential structural protein in the desmosomes, connecting cardiomyocytes supporting electrical and mechanical signaling and overall tissue strength

Desmosome and Gap Junctions in PKP2-associated HCM Heart

Tenaya Approach

- Target the underlying genetic cause of disease
- Deliver a working PKP2 gene utilizing AAV9 capsid
- Increase PKP2 protein levels
- Potential to halt disease progression, reverse symptoms and improve patient quality of life

Treated with TN-401

TN-401 use of AAV9 capsid comes with robust validation from preclinical efficacy and clinical studies

✓ **Most well-established safety record of any capsid.** Zolgensma is an approved product using AAV9 and has been used in >3700 patients in >51 countries, with >9 years follow-up (1)

Human

- ✓ Only capsid with validation from human hearts for biodistribution, transduction, and durable gene expression (2)
- ✓ Only capsid endemic to humans being used in *PKP2* clinical studies as compared to AAVrh74 and AAVrh10 discovered in rhesus monkeys ⁽⁸⁾

Non-Human Primates

✓ Proven to achieve significantly higher gene expression in cardiomyocytes vs other capsids in several preclinical studies, include head-to-head comparisons in NHPs (and mice) (3)

Mice

- ✓ Most extensive body of preclinical evidence in *PKP2* disease models from three independently published studies ^(5,6,7)
- ✓ Outperformed AAVrh74 in a head-to-head preclinical comparison in *PKP2* models plus in other disease models (3,4)

^{2.} Rocket corporate presentation

^{3.} Ze, et al. ASGCT 2023

Comparing capsids: AAV9 outperforms other serotypes in preclinical models of mice and NHPs

AAV9 achieved significantly higher gene expression in cardiomyocytes in a headto-head preclinical comparisons of AAV9, AAVrh10, and AAVrh74

Mouse Model of PKP2 ARVC

All heart cells 1.5 1.0 0.0 Aave ann. 10 Aave ann. 10 Aave ann. 10 Aave ann. 10

Viral DNA Transduction

Non-Human Primate Model

AAV9-based gene therapy restores PKP2 protein to normal levels at low doses in animal models

3E13 vg/kg dose is sufficient to restore normal protein levels of PKP2 and other desmosomal proteins

TN-401 preclinical evidence includes arrhythmia prevention, disease modification, survival benefit

Single 3E13 vg/kg dose in PKP2 knock-out mouse model reverses hallmarks of disease including reversal of arrythmia and RV enlargement, plus extended survival

WT: Normal Sinus Rhythm

Untreated Control: Abnormal Ventricular Beats

Gene Therapy: Normal Sinus Rhythm

↓ RV Enlargement

Yang, et al, ASGCT 2022

RIDGE™-1 Phase 1b clinical trial for *PKP2*-associated ARVC

IND cleared; Patient dosing to begin Q4 2024

Study Objectives

 Safety, tolerability, dose-finding and PD

Eligibility

- ARVC diagnosis
- PKP2 mutation carriers
- Adults (age 18-65)
- ICD present
- Mean PVCs >500 per 24 hours
- LVEF > 50%
- NYHA class I-III
- Low AAV9 titer

Design

- Open-label, multi-center dose-escalation and doseexpansion study
- 52-week study period with four-year safety and efficacy follow-up

Endpoints

- Safety and tolerability
- Pharmacokinetics (PK)
 - Transgene, mRNA and protein expression via cardiac biopsies
- Pharmacodynamics (PD)
 - Changes in PVC & NSVT
- Exploratory efficacy endpoints
 - Frequency of ICD shocks
 - Frequency of VTs
 - Imaging biomarkers (structural/hemodynamic changes by echo)
 - Plasma biomarkers
 - Patient reported outcomes

HFpEF remains the largest unmet need in heart disease estimated to affect >3M in the U.S. alone (1, 2)

- Characterized by diastolic dysfunction driven by stiffening of heart ventricles
- Initial presentation includes shortness of breath, edema, fatigue, coughing, wheezing, dizziness
- Co-morbidities include obesity, metabolic syndrome, diabetes hypertension, atrial fibrillation, pulmonary disease, and renal dysfunction (3)
- 75% of people hospitalized with HFpEF die within 5 years (4)

 Multiple contributing risk factors resulting in complex pathophysiology

TN-301 small molecule HDAC6 inhibitor for HFpEF

Phase 1 complete; Optimally suited for development by/with a partner

About HFpEF

- Disease driven by multi-factorial processes involving many cell types and cellular structures:
 - Inside heart (cardiomyocytes, fibroblasts, mitochondria, sarcomeres, arterial walls)
 - Outside heart (systemic inflammation, oxidative stress, metabolic dysregulation)

Tenaya Approach

- TN-301 designed to specifically inhibit HDAC6 in the cytoplasm of heart cells
- HDAC6 inhibitor multi-modal MOA addresses diverse HFpEF pathophysiological processes
- Preclinical evidence of robust reversal of heart abnormalities (e.g., stiffness, hypertrophy) and systemic benefits (e.g., inflammation, glucose tolerance, insulin sensitivity, autophagy)

Key Advantages

- TN-301 high selectivity (1000x fold) for HDAC6 provides safety advantage vs partially selective HDAC6 inhibitors
- Pleiotropic effect has potential to address HFpEF co-morbidities ("pipeline in a pill")
- TN-301 MOA is orthogonal to other heart medicines (e.g. SGLT2 inhibitors) and may yield additive benefits
- PD marker of target engagement conveniently measurable in human plasma
- Small molecule cost of goods appropriate for large indications

HDAC6 is a cytoplasmic enzyme that regulates diverse cellular processes in many different types of cells of the body

Completed Phase 1 trial of TN-301 in healthy participants

TN-301 was generally well tolerated across broad dose ranges

- Single-ascending doses (SAD) of 1mg 700mg
- Multiple ascending doses (MAD) of 25mg, 100 mg and 300 mg for 14 days
- Most AEs observed were GI related; occurred with similar frequency in placebo group and did not increase in association with dose

PK and half-life support once-daily dosing

Plasma exposure increased proportionally with TN-301 dose across ranges evaluated

Mean (SEM) plasma TN-301 concentration over time (MAD)

Target engagement (as measured by tubulin acetylation) seen at low doses

Increasing TN-301 exposure correlated with PD effect

Variability (SEM) in acetylated tubulin levels ranged from 0.038 to 1.410 (SAD results); and 0.067 to 4.050 (MAD results)

HDAC6 inhibitor demonstrates preclinical potential for use as single-agent or in combination with SGLT2 inhibitor

HDAC6 vs. SGLT2 inhibition

Comparable efficacy as a single agent

Yang, et al; ESC-HF 2022

HDAC6 + SGLT2 inhibition

Farshidfar, et al; HFSA 2023

HDAC6 inhibitor demonstrates greater impact vs SGLT2 inhibitor on improving metabolism, oxidative stress and inflammation, key mechanisms involved in HFpEF pathophysiology

Selected Capabilities

Next generation AAV capsid engineering efforts aimed at enhanced efficacy and safety

Focused AAV
Screening Efforts
Using Multiple Strategies

Screened > 1B variants from ~30 diverse libraries

Validated in silico, in vitro and in vivo (4 species)

Multiple criteria

- ↑ heart transduction
- ↓ liver transduction

Novel AAV Capsids for Heart that Outperform Parental Vectors

2nd generation novel capsids demonstrate reduced trafficking to the liver in NHPs vs. AAV9

Top novel capsids show improved heart-to-liver ratio across 3 species

Chen, et al; ESGCT 2022

2nd Generation Capsid Characteristics

- - Superior liver de-targeting → may improve the safety profile
 - Superior NAb evasion

 may enable treatment of a greater number of patients

End-to-end gene therapy manufacturing capabilities built to scale from early research to drug approvals

Manufacturing Technology Development Center (non-GMP)

Process Development

- Development of science to improve process and product attributes
- → IP filed on technologies to boost AAV drug product potency and yield

Analytical Development

- Development of assays to support drug substance and product release
- → Potency assays accepted by FDA for both TN-201 and TN-401

Genetic Medicines Manufacturing Center (cGMP)

- Modular design enables future expansion for commercial launch
- → Sufficient Phase 1b clinical supply available for TN-201 and TN-401

200L

200L

1000L

Shake flask

50L

2024 Strategic Priorities

2024 strategic priorities

Drive clinical-stage gene therapy programs towards initial data readouts

TN-201

FY – Enroll patients in MyPEAK-1 Dec – Release initial MyPEAK-1 data

✓ Present data from early-stage research efforts and platform enhancement innovations

TN-401

Q4 – Initiate patient dosing in RIDGE-1

Cash and equivalents of \$79.5* million as of September 30, 2024

Planned operations funded into 2H 2025

